Решение систем линейных уравнений с помощью обратной матрицы. Матричный метод решения слау: пример решения с помощью обратной матрицы Решить систему линейных уравнений в матричном виде

  • 6.4. Некоторые приложения скалярного произведения
  • 11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
  • 13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
  • 14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
  • 15. Способы задания прямой на плоскости.
  • 16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
  • 17. Уравнение прямой на плоскости в отрезках (вывод).
  • Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
  • 18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
  • 19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
  • 20. Угол между прямыми на плоскости (вывод).
  • 21. Расстояние от точки до прямой на плоскости (вывод).
  • 22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
  • 23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
  • 24. Уравнение плоскости в отрезках (вывод).
  • 25. Уравнение плоскости, проходящей через три точки (вывод).
  • 26. Угол между плоскостями (вывод).
  • 27. Расстояние от точки до плоскости (вывод).
  • 28. Условия параллельности и перпендикулярности плоскостей (вывод).
  • 29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
  • 30. Канонические уравнения прямой в пространстве (вывод).
  • Составление канонических уравнений прямой в пространстве.
  • Частные случаи канонических уравнений прямой в пространстве.
  • Канонические уравнения прямой проходящей через две заданные точки пространства.
  • Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
  • 31. Угол между прямыми (вывод).
  • 32. Расстояние от точки до прямой на плоскости (вывод).
  • Расстояние от точки до прямой на плоскости – теория, примеры, решения.
  • Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
  • Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
  • Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
  • Расстояние от точки до прямой в пространстве – теория, примеры, решения.
  • Первый способ нахождения расстояния от точки до прямойaв пространстве.
  • Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
  • 33. Условия параллельности и перпендикулярности прямых в пространстве.
  • 34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
  • 35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид, где– положительные действительные числа, причём.Как построить эллипс?
  • 36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
  • 37. Каноническое уравнение параболы (вывод) и построение.
  • 38. Функция. Основные определения. Графики основных элементарных функций.
  • 39. Числовые последовательности. Предел числовой последовательности.
  • 40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
  • 41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
  • 42. Число e.
  • Содержание
  • Способы определения
  • Свойства
  • История
  • Приближения
  • 43. Определение предела функции. Раскрытие неопределённостей.
  • 44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
  • Содержание
  • Первый замечательный предел
  • Второй замечательный предел
  • 45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
  • Левый и правый пределы функции
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • 46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
  • 47. Теоремы о производной обратной, сложной функций.
  • 48. Производные простейших элементарных функций.
  • 49. Дифференцирование параметрических, неявных и степенно-показательных функций.
  • 21. Дифференцирование неявных и параметрически заданных функций
  • 21.1. Неявно заданная функция
  • 21.2. Функция, заданная параметрически
  • 50. Производные высших порядков. Формула Тейлора.
  • 51. Дифференциал. Применение дифференциала к приближенным вычислениям.
  • 52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
  • 53. Теорема о необходимом и достаточном условиях монотонности функции.
  • 54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
  • Теорема (необходимое условие экстремума)
  • 55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
  • Доказательство
  • 57. Определители n-ого порядка, их свойства.
  • 58. Матрицы и действия над ними. Ранг матрицы.
  • Определение
  • Связанные определения
  • Свойства
  • Линейное преобразование и ранг матрицы
  • 59. Обратная матрица. Теорема о существовании обратной матрицы.
  • 60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
  • Решение систем линейных алгебраических уравнений, методы решения, примеры.
  • Определения, понятия, обозначения.
  • Решение элементарных систем линейных алгебраических уравнений.
  • Решение систем линейных уравнений методом Крамера.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  • Решение систем линейных уравнений методом Гаусса.
  • Решение систем линейных алгебраических уравнений общего вида.
  • Теорема Кронекера – Капелли.
  • Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  • Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  • Решение систем уравнений, сводящихся к слау.
  • Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

    Пусть система линейных алгебраических уравнений задана в матричной форме , где матрицаA имеет размерностьn наn и ее определитель отличен от нуля.

    Так как , то матрицаА – обратима, то есть, существует обратная матрица. Если умножить обе части равенстванаслева, то получим формулу для нахождения матрицы-столбца неизвестных переменных. Так мы получили решение системы линейных алгебраических уравнений матричным методом.

    матричным методом.

    Перепишем систему уравнений в матричной форме:

    Так как то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как.

    Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицыА (при необходимости смотрите статьюметоды нахождения обратной матрицы):

    Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицуна матрицу-столбец свободных членов(при необходимости смотрите статьюоперации над матрицами):

    или в другой записи x 1 = 4, x 2 = 0, x 3 = -1 .

    Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

    Более подробное описание теории и дополнительные примеры смотрите в статье матричный метод решения систем линейных уравнений.

    К началу страницы

    Решение систем линейных уравнений методом Гаусса.

    Пусть нам требуется найти решение системы из n линейных уравнений сn неизвестными переменнымиопределитель основной матрицы которой отличен от нуля.

    Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключаетсяx 1 из всех уравнений системы, начиная со второго, далее исключаетсяx 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменнаяx n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называетсяпрямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находитсяx n , с помощью этого значения из предпоследнего уравнения вычисляетсяx n-1 , и так далее, из первого уравнения находитсяx 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называетсяобратным ходом метода Гаусса .

    Кратко опишем алгоритм исключения неизвестных переменных.

    Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменнуюx 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на, к третьему уравнению прибавим первое, умноженное на, и так далее, кn-ому уравнению прибавим первое, умноженное на. Система уравнений после таких преобразований примет видгде, а.

    К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменнаяx 1 исключена из всех уравнений, начиная со второго.

    Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

    Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на, и так далее, кn-ому уравнению прибавим второе, умноженное на. Система уравнений после таких преобразований примет видгде, а. Таким образом, переменнаяx 2 исключена из всех уравнений, начиная с третьего.

    Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

    Так продолжаем прямой ход метода Гаусса пока система не примет вид

    С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как, с помощью полученного значенияx n находимx n-1 из предпоследнего уравнения, и так далее, находимx 1 из первого уравнения.

    Решите систему линейных уравнений методом Гаусса.

    Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные наи насоответственно:

    Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на:

    На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

    Из последнего уравнения полученной системы уравнений находим x 3 :

    Из второго уравнения получаем .

    Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

    x 1 = 4, x 2 = 0, x 3 = -1 .

    Более детальную информацию и дополнительные примеры смотрите в разделе решение элементарных систем линейных алгебраических уравнений методом Гаусса.

    К началу страницы

    Матричный способ решения систем линейных уравнений

    Рассмотрим систему линейных уравнений следующего вида:

    $\left\{\begin{array}{c} {a_{11} x_{1} +a_{12} x_{2} +...+a_{1n} x_{n} =b_{1} } \\ {a_{21} x_{1} +a_{22} x_{2} +...+a_{2n} x_{n} =b_{2} } \\ {...} \\ {a_{n1} x_{1} +a_{n2} x_{2} +...+a_{nn} x_{n} =b_{n} } \end{array}\right. .$

    Числа $a_{ij} (i=1..n,j=1..n)$ - коэффициенты системы, числа $b_{i} (i=1..n)$ - свободные члены.

    Определение 1

    В случае, когда все свободные члены равны нулю, система называется однородной, в противном случае - неоднородной.

    Каждой СЛАУ можно поставить в соответствие несколько матриц и записать систему в так называемом матричном виде.

    Определение 2

    Матрица коэффициентов системы называется матрицей системы и обозначается, как правило, буквой $A$.

    Столбец свободных членов образует вектор-столбец, который, как правило, обозначается буквой $B$ и называется матрицей свободных членов.

    Неизвестные переменные образуют вектор-столбец, который, как правило, обозначается буквой $X$ и называется матрицей неизвестных.

    Описанные выше матрицы имеют вид:

    $A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {...} & {a_{1n} } \\ {a_{21} } & {a_{22} } & {...} & {a_{2n} } \\ {...} & {...} & {...} & {...} \\ {a_{n1} } & {a_{n2} } & {...} & {a_{nn} } \end{array}\right),B=\left(\begin{array}{c} {b_{1} } \\ {b_{2} } \\ {...} \\ {b_{n} } \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {...} \\ {x_{n} } \end{array}\right).$

    Используя матрицы, СЛАУ можно переписать в виде $A\cdot X=B$. Такую запись часто называют матричным уравнением.

    Вообще говоря, в матричном виде записать можно любую СЛАУ.

    Примеры решения системы с помощью обратной матрицы

    Пример 1

    Дана СЛАУ: $\left\{\begin{array}{c} {3x_{1} -2x_{2} +x_{3} -x_{4} =3} \\ {x_{1} -12x_{2} -x_{3} -x_{4} =7} \\ {2x_{1} -3x_{2} +x_{3} -3x_{4} =5} \end{array}\right. $. Записать систему в матричном виде.

    Решение:

    $A=\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right),B=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right).$

    $\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right)\cdot \left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right)=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right)$

    В случае, когда матрица системы является квадратной, СЛАУ можно решить уравнения матричным способом.

    Имея матричное уравнение $A\cdot X=B$, можно выразить из него $X$ следующим способом:

    $A^{-1} \cdot A\cdot X=A^{-1} \cdot B$

    $A^{-1} \cdot A=E$ (свойство произведения матриц)

    $E\cdot X=A^{-1} \cdot B$

    $E\cdot X=X$ (свойство произведения матриц)

    $X=A^{-1} \cdot B$

    Алгоритм решения системы алгебраических уравнений с помощью обратной матрицы:

    • записать систему в матричном виде;
    • вычислить определитель матрицы системы;
    • если определитель матрицы системы отличен от нуля, то находим обратную матрицу;
    • решение системы вычисляем по формуле $X=A^{-1} \cdot B$.

    Если матрица системы имеет определитель, не равный нулю, то данная система имеет единственное решение, которое можно найти матричным способом.

    Если матрица системы имеет определитель, равный нулю, то данную систему нельзя решить матричным способом.

    Пример 2

    Дана СЛАУ: $\left\{\begin{array}{c} {x_{1} +3x_{3} =26} \\ {-x_{1} +2x_{2} +x_{3} =52} \\ {3x_{1} +2x_{2} =52} \end{array}\right. $. Решить СЛАУ методом обратной матрицы, если это возможно.

    Решение:

    $A=\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right),B=\left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right). $

    Нахождение определителя матрицы системы:

    $\begin{array}{l} {\det A=\left|\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right|=1\cdot 2\cdot 0+0\cdot 1\cdot 3+2\cdot (-1)\cdot 3-3\cdot 2\cdot 3-2\cdot 1\cdot 1-0\cdot (-1)\cdot 0=0+0-6-18-2-0=-26\ne 0} \end{array}$ Так как определитель не равен нулю, то матрица системы имеет обратную матрицу и, следовательно, система уравнений может быть решена методом обратной матрицы. Полученное решение будет единственным.

    Решим систему уравнений с помощью обратной матрицы:

    $A_{11} =(-1)^{1+1} \cdot \left|\begin{array}{cc} {2} & {1} \\ {2} & {0} \end{array}\right|=0-2=-2; A_{12} =(-1)^{1+2} \cdot \left|\begin{array}{cc} {-1} & {1} \\ {3} & {0} \end{array}\right|=-(0-3)=3;$

    $A_{13} =(-1)^{1+3} \cdot \left|\begin{array}{cc} {-1} & {2} \\ {3} & {2} \end{array}\right|=-2-6=-8; A_{21} =(-1)^{2+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {0} \end{array}\right|=-(0-6)=6; $

    $A_{22} =(-1)^{2+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {3} & {0} \end{array}\right|=0-9=-9; A_{23} =(-1)^{2+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {3} & {2} \end{array}\right|=-(2-0)=-2;$

    $A_{31} =(-1)^{3+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {1} \end{array}\right|=0-6=-6; A_{32} =(-1)^{3+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {-1} & {1} \end{array}\right|=-(1+3)=-4;$

    $A_{33} =(-1)^{3+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {-1} & {2} \end{array}\right|=2-0=2$

    Искомая обратная матрица:

    $A^{-1} =\frac{1}{-26} \cdot \left(\begin{array}{ccc} {-2} & {6} & {-6} \\ {3} & {-9} & {-4} \\ {-8} & {-2} & {2} \end{array}\right)=\frac{1}{26} \cdot \left(\begin{array}{ccc} {2} & {-6} & {6} \\ {-3} & {9} & {4} \\ {8} & {2} & {-2} \end{array}\right)=\left(\begin{array}{ccc} {\frac{2}{26} } & {\frac{-6}{26} } & {\frac{6}{26} } \\ {\frac{-3}{26} } & {\frac{9}{26} } & {\frac{4}{26} } \\ {\frac{8}{26} } & {\frac{2}{26} } & {\frac{-2}{26} } \end{array}\right)=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right).$

    Найдем решение системы:

    $X=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right)\cdot \left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right)=\left(\begin{array}{c} {\frac{1}{13} \cdot 26-\frac{3}{13} \cdot 52+\frac{3}{13} \cdot 52} \\ {-\frac{3}{26} \cdot 26+\frac{9}{26} \cdot 52+\frac{2}{13} \cdot 52} \\ {\frac{4}{13} \cdot 26+\frac{1}{13} \cdot 52-\frac{1}{13} \cdot 52} \end{array}\right)=\left(\begin{array}{c} {2-12+12} \\ {-3+18+8} \\ {8+4-4} \end{array}\right)=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$

    $X=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$ - искомое решение системы уравнений.

    Уравнения вообще, линейные алгебраические уравнения и их системы, а также методы их решения занимают в математике, как теоретической, так и прикладной, особое место.

    Это связано с тем обстоятельством, что подавляющее большинство физических, экономических, технических и даже педагогических задач могут быть описаны и решены с помощью разнообразных уравнений и их систем. В последнее время особую популярность среди исследователей, ученых и практиков приобрело математическое моделирование практически во всех предметных областях, что объясняется очевидными его преимуществами перед другими известными и апробированными методами исследования объектов различной природы, в частности, так называемых, сложных систем. Существует великое многообразие различных определений математической модели, данных учеными в разные времена, но на наш взгляд, самое удачное, это следующее утверждение. Математическая модель – это идея, выраженная уравнением. Таким образом, умение составлять и решать уравнения и их системы – неотъемлемая характеристика современного специалиста.

    Для решения систем линейных алгебраических уравнений наиболее часто используются методы: Крамера, Жордана-Гаусса и матричный метод.

    Матричный метод решения - метод решения с помощью обратной матрицы систем линейных алгебраических уравнений с ненулевым определителем.

    Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то систему линейных алгебраических уравнений можно записать в виде следующего матричного уравнения A · X = B, которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю. При этом решение системы уравнений можно найти следующим способом X = A -1 · B , где A -1 - обратная матрица.

    Матричный метод решения состоит в следующем.

    Пусть дана система линейных уравнений с n неизвестными:

    Её можно переписать в матричной форме: AX = B , где A - основная матрица системы, B и X - столбцы свободных членов и решений системы соответственно:

    Умножим это матричное уравнение слева на A -1 - матрицу, обратную к матрице A : A -1 (AX ) = A -1 B

    Так как A -1 A = E , получаем X = A -1 B . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A . Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A : detA ≠ 0.

    Для однородной системы линейных уравнений, то есть когда вектор B = 0 , действительно обратное правило: система AX = 0 имеет нетривиальное (то есть не нулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

    Пример решения неоднородной системы линейных алгебраических уравнений .

    Убедимся в том, что определитель матрицы, составленный из коэффициентов при неизвестных системы линейных алгебраических уравнений не равен нулю.

    Следующим шагом будет вычисление алгебраических дополнений для элементов матрицы, состоящей из коэффициентов при неизвестных. Они понадобятся для нахождения обратной матрицы.

    В первой части мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу рекомендую ознакомиться с первой частью. Возможно, некоторым посетителям покажется материал слишком простым, но по ходу решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

    А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы изложены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными способами.

    Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

    Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

    Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

    Рассмотрим систему уравнений

    На первом шаге вычислим определитель , его называют главным определителем системы .

    метод Гаусса .

    Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
    и

    На практике вышеуказанные определители также могут обозначаться латинской буквой .

    Корни уравнения находим по формулам:
    ,

    Пример 7

    Решить систему линейных уравнений

    Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

    Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

    Что делать? В подобных случаях и приходят на помощь формулы Крамера.

    ;

    ;

    Ответ : ,

    Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

    Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

    Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

    Пример 8

    Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

    Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

    Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

    Находим главный определитель системы:

    Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

    Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
    , ,

    И, наконец, ответ рассчитывается по формулам:

    Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

    Пример 9

    Решить систему по формулам Крамера.

    Решение : Решим систему по формулам Крамера.

    , значит, система имеет единственное решение.

    Ответ : .

    Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

    Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
    Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

    1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

    2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

    Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

    Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

    Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
    – на месте отсутствующих переменных ставятся нули.
    Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

    Пример 10

    Решить систему по формулам Крамера.

    Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

    Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.

    Решение системы с помощью обратной матрицы

    Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

    Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

    Пример 11

    Решить систему с матричным методом

    Решение : Запишем систему в матричной форме:
    , где

    Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

    Обратную матрицу найдем по формуле:
    , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

    Сначала разбираемся с определителем:

    Здесь определитель раскрыт по первой строке.

    Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

    Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

    Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

    То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце

    В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

    Определение 1

    Метод обратной матрицы - это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

    Пример 1

    Найти решение системы n линейных уравнений с n неизвестными:

    a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

    Матричный вид записи : А × X = B

    где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n - матрица системы.

    X = x 1 x 2 ⋮ x n - столбец неизвестных,

    B = b 1 b 2 ⋮ b n - столбец свободных коэффициентов.

    Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A - 1:

    A - 1 × A × X = A - 1 × B .

    Так как А - 1 × А = Е, то Е × X = А - 1 × В или X = А - 1 × В.

    Замечание

    Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю. Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А.

    В том случае, если d e t A н е р а в е н н у л ю, у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

    Пример решения системы линейных уравнений с помощью метода обратной матрицы

    Пример 2

    Решаем СЛАУ методом обратной матрицы:

    2 x 1 - 4 x 2 + 3 x 3 = 1 x 1 - 2 x 2 + 4 x 3 = 3 3 x 1 - x 2 + 5 x 3 = 2

    Как решить?

    • Записываем систему в виде матричного уравнения А X = B , где

    А = 2 - 4 3 1 - 2 4 3 - 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

    • Выражаем из этого уравнения X:
    • Находим определитель матрицы А:

    d e t A = 2 - 4 3 1 - 2 4 3 - 1 5 = 2 × (- 2) × 5 + 3 × (- 4) × 4 + 3 × (- 1) × 1 - 3 × (- 2) × 3 - - 1 × (- 4) × 5 - 2 × 4 - (- 1) = - 20 - 48 - 3 + 18 + 20 + 8 = - 25

    d e t А не равняется 0, следовательно для этой системы подходит метод решения обратной матрицей.

    • Находим обратную матрицу А - 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А:

    А 11 = (- 1) (1 + 1) - 2 4 - 1 5 = - 10 + 4 = - 6 ,

    А 12 = (- 1) 1 + 2 1 4 3 5 = - (5 - 12) = 7 ,

    А 13 = (- 1) 1 + 3 1 - 2 3 - 1 = - 1 + 6 = 5 ,

    А 21 = (- 1) 2 + 1 - 4 3 - 1 5 = - (- 20 + 3) = 17 ,

    А 22 = (- 1) 2 + 2 2 3 3 5 - 10 - 9 = 1 ,

    А 23 = (- 1) 2 + 3 2 - 4 3 - 1 = - (- 2 + 12) = - 10 ,

    А 31 = (- 1) 3 + 1 - 4 3 - 2 4 = - 16 + 6 = - 10 ,

    А 32 = (- 1) 3 + 2 2 3 1 4 = - (8 - 3) = - 5 ,

    А 33 = (- 1) 3 + 3 2 - 4 1 - 2 = - 4 + 4 = 0 .

    • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А:

    А * = - 6 7 5 17 1 - 10 - 10 - 5 0

    • Записываем обратную матрицу согласно формуле:

    A - 1 = 1 d e t A (A *) T: А - 1 = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 ,

    • Умножаем обратную матрицу А - 1 на столбец свободных членов В и получаем решение системы:

    X = A - 1 × B = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 1 3 2 = - 1 25 - 6 + 51 - 20 7 + 3 - 10 5 - 30 + 0 = - 1 0 1

    Ответ : x 1 = - 1 ; x 2 = 0 ; x 3 = 1

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter